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(57) ABSTRACT

A technique for generating a three-dimensional reconstruc-
tion of a scene involves generating a high-fidelity point
cloud representing a three-dimensional reconstruction of a
scene from two-dimensional images generated by at least
one sensor whose position and orientation are known rela-
tive to a fixed coordinate system for each of the images. The
high-fidelity point cloud is generated in a relative coordinate
system without regard to the position and orientation of the
sensor(s). A low-fidelity point cloud is generated in the fixed
coordinate system from the two-dimensional images using
the position and orientation of the sensor(s) relative to the
fixed coordinate system. A transformation between the rela-
tive and fixed coordinate systems is determined based on a
relationship between points in the high-fidelity and low-
fidelity point clouds, and the high-fidelity point cloud is
converted from the relative coordinate system to the fixed
coordinate system by applying the transformation to the
high-fidelity point cloud.

20 Claims, 7 Drawing Sheets
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GEOACCURATE THREE-DIMENSIONAL
RECONSTRUCTION VIA IMAGE-BASED
GEOMETRY

BACKGROUND

In the field of Computer Vision, the technique of structure
from motion (SfM) refers to the process of constructing a
point cloud that estimates three-dimensional structures from
a set of two-dimensional images, such as a sequence of
two-dimensional images of a scene taken from different
perspectives. The resulting reconstructed, three-dimensional
image is created in a relative coordinate system (e.g., an
arbitrary world coordinate system (WCS)) that satisfies the
established image geometry but without knowledge of its
relationship to a fixed, earth-based coordinate system. The
problem of obtaining a geoaccurate three-dimensional point
cloud has received little attention in the literature, largely
due to a perceived barrier between the fields of Computer
Vision and traditional photogrammetry. It has been proposed
that the relative model from the SfM process may be
manually placed into a desired fixed, earth-based coordinate
system using ground control points (GCPs). Attempts have
also been made to alter the default initialization of the
adjustment algorithm in SfM using geotags and vanishing
point estimates or by using metadata containing sensor
position and orientation information. Others have proposed
geo-spatial registration of imagery.

A major shortcoming of many geo-spatial registration
methodologies is the use of an external digital elevation map
(DEM) to achieve accurate geolocation. Use of geotags as
prior geolocation information in the adjustment process has
been demonstrated to obtain geoaccurate ground-level
reconstruction. However, attempts at a similar process for
airborne imagery resulted in undesirable global translation
due to drift in the algorithm employed. Using external
position and/or orientation information as initialization
parameters introduces undesirable error into the adjustment
process of SfM, which may produce larger inaccuracy for
long-distance image capture, e.g., from airborne or satellite
platforms. Accordingly, there remains a need for techniques
for obtaining geoaccurate image-based three-dimensional
scene reconstructions in the absence of ground control
points or an external DEM.

SUMMARY

Described herein is a technique for generating a geoac-
curate three-dimensional reconstruction of a scene. The
technique involves generating a high-fidelity point cloud
representing a three-dimensional reconstruction of a scene
from a plurality of two-dimensional images generated by at
least one sensor whose position and orientation are known
relative to a fixed coordinate system for each of the two-
dimensional images. However, the high-fidelity point cloud
is generated in a relative coordinate system without regard
to the position and orientation of the sensor(s) relative to the
fixed coordinate system. A low-fidelity point cloud is gen-
erated in the fixed coordinate system from the plurality of
two-dimensional images using the position and orientation
of the sensor(s) relative to the fixed coordinate system. A
transformation between the relative coordinate system and
the fixed coordinate system is determined based on a rela-
tionship between points in the high-fidelity point cloud and
points in the low-fidelity point cloud, and the high-fidelity
point cloud is converted from the relative coordinate system
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2

to the fixed coordinate system by applying the transforma-
tion to points in the high-fidelity point cloud.

By way of example, the high-fidelity point cloud can be
generated using structure from motion (StM) processing in
which the primary sources of error include relatively small
feature extraction errors and correspondence errors among
the two-dimensional images, while avoid introducing physi-
cal sensor model errors, including errors in the position and
orientation of the sensor(s). The relative coordinate system
can be an arbitrary world coordinate system (WCS) while
the fixed coordinate system can be an earth-based coordinate
system, where the low-fidelity point cloud is generated
based on the physical sensor model of the sensor(s), spe-
cifically, the ground-to-image function of the sensor(s). The
position and orientation of the sensor(s) can be received as
metadata associated with each of the two-dimensional
images. For example, the metadata can include global posi-
tioning system (GPS) data and inertial navigation system
(INS) data. In the case of the low-fidelity point cloud, the
more significant position and orientation errors of the
sensor(s) result in a much more “noisy” point cloud, though
this lower-fidelity point cloud is situated in the desired fixed
coordinate system.

The low-fidelity point cloud can be a sparse point cloud
with fewer points than the high-fidelity point cloud. The
transformation can be determined using this sparse low-
fidelity point cloud and a sparse high-fidelity point cloud
containing only a subset of the points in the high-fidelity
point cloud. The transformation can be implemented as a
transformation matrix that is applied to each point in the
high-fidelity point cloud to perform translation, scaling and
rotation such that relative distances between the points in the
high-fidelity point cloud are maintained in the fixed coor-
dinate system. Unlike conventional approaches, the high-
fidelity point cloud is converted from the relative coordinate
system to the fixed coordinate system without use of a digital
elevation map (DEM) or ground control points (GCPs) and
avoids the need for manual registration between the point
cloud and externally generated references in the fixed coor-
dinate system.

The above and still further features and advantages of the
present invention will become apparent upon consideration
of the following definitions, descriptions and descriptive
figures of specific embodiments thereof wherein like refer-
ence numerals in the various figures are utilized to designate
like components. While these descriptions go into specific
details of the invention, it should be understood that varia-
tions may and do exist and would be apparent to those
skilled in the art based on the descriptions herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is graphical representation of triangulation, in the
absence of errors in image-based geometry, to determine a
three dimensional point from corresponding image feature
points depicted in two images.

FIG. 2 is graphical representation of triangulation, in the
presence of errors in the image-based geometry, to deter-
mine a three dimensional point from corresponding image
feature points depicted in two images.

FIG. 3 is graphical representation of triangulation using
refined, image-based geometry to determine a set of three
dimensional points from corresponding image feature points
depicted in two images.
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FIG. 4 is graphical representation of triangulation in the
presence of errors in the camera position and orientation in
which corresponding epipolar lines do not interest at a point
in the epipolar plane.

FIG. 5 is a functional block diagram illustrating an image
reconstruction system for generating a geoaccurate three-
dimensional image reconstruction via image-based geom-
etry in accordance with the inventive concepts described
herein.

FIG. 6 is a flow diagram illustrating operations performed
to generate a geoaccurate three-dimensional image recon-
struction via image-based geometry in accordance with the
inventive concepts described herein.

FIG. 7 is a graphical representation of a two-dimensional
low-fidelity point cloud in a fixed coordinate system repre-
senting the results of the triangulation algorithm using
position and orientation data (e.g., GPS and INS telemetry
data).

FIG. 8 is a graphical representation of a two-dimensional
high-fidelity point cloud in a relative coordinate system
representing the SfM image-based reconstruction of the
geometry of the same structure shown in FIG. 7.

FIG. 9 is graphical representation of triangulation using
image-based geometry to generate a high-fidelity point
cloud y; in a relative coordinate system and a low-fidelity
point cloud x, in a fixed coordinate system using the physical
sensor model and metadata (e.g., sensor position and orien-
tation data).

FIG. 10 is graphical representation of a point cloud
transformation involving generating a transformation matrix
T that maps the relative coordinate system of the high-
fidelity point cloud y, to the fixed coordinate system of the
low-fidelity point cloud x,.

FIG. 11 is a graphical representation of a centered and
scaled high-fidelity point cloud relative to the low-fidelity
point cloud, corresponding to the two-dimensional example
shown in FIGS. 9 and 10.

FIG. 12 is a graphical representation of an optimal rota-
tion of the high-fidelity point cloud relative to the low-
fidelity point cloud shown in FIG. 11 in order to place the
high-fidelity point cloud in the fixed coordinate system.

DETAILED DESCRIPTION

Described herein is a novel approach for obtaining geoac-
curate, image-based three-dimensional scene reconstruc-
tions in the absence of ground control points or a digital
evaluation map (DEM) by using a SfM framework and the
full physical sensor model of the collection system. Absolute
position and orientation information provided by an imaging
platform can be used to reconstruct a three-dimensional
scene in a fixed world, earth-based coordinate system.
However, rather than triangulating image pixels directly into
fixed, earth-based coordinates, which introduces consider-
able error, a relative reconstruction is first computed via
image-based geometry, i.e., geometry derived from image
feature correspondences without consideration of the point
cloud’s relationship to earth-based coordinates. In other
words, the geolocation accuracy is improved using the
relative distances provided by the SfM reconstruction based
primarily on feature extraction and correspondence. Once a
high-fidelity point cloud has been developed in this manner,
a transformation between the relative coordinate system and
a fixed, earth-based coordinate system is determined by
comparing a number of points in the high-fidelity point
cloud with corresponding points in a lower-fidelity point
cloud reconstructed in the fixed, earth-based coordinate
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system. The resulting transformation is then used to place
the high-fidelity point cloud in the fixed, earth-based coor-
dinate system while preserving the image quality and avoid-
ing degradation from errors in the physical sensor model
such as errors in sensor position and orientation data. By
placing the StM point cloud in a fixed, earth-based coordi-
nate system, increased geolocation accuracy is achieved for
pixels in the original imagery that produce each three-
dimensional point. The generation of geoaccurate point
clouds in the absence of a DEM is a significant benefit of this
approach and avoids any requirement to perform manual
registration between the reconstructed image point cloud
and known reference points.

By way of background, the physical sensor model of a
camera traditionally includes a ground-to-image function,
i.e., the analytical form that relates a point on the ground to
a point at the image plane. The ground-to-image function of
the sensor model may contain several linear and nonlinear
operations of many parameters. Most modern Computer
Vision algorithms assume a central projection camera
model, and the matrix representations adequately represent
the planar projection of pinhole camera geometry. To
accommodate this representation, the ground-to-image func-
tion of the physical sensor model must be simplified to fit its
form. The ground-to-image function for a system may be
manifested in many forms, from the physical modeling of
each individual component in the mechanical stack-up, to a
reduced (less physically meaningful) frame camera model
that follows the form of the collinearity equations commonly
found in the literature. The techniques described herein are
not limited to any particular physical sensor model or
ground-to-image function representations.

By way of further background, the goal of SfM processing
is to generate a three-dimensional point cloud that consti-
tutes a reconstruction of structures or a scene in a three-
dimensional coordinate system. A three-dimensional visual-
ization can be rendered by performing surface
reconstruction and image draping on the resulting point
cloud according to known techniques. Essentially, common
features (e.g., a corner of a building, the edge of a river, etc.)
are identified in a set of two-dimensional images, and
three-dimensional coordinates of features can be determined
by tying together the features from the two-dimensional
images, taking into consideration assumptions about the
image collection system (e.g., one or more cameras). Thus,
SfM processing initially involves applying a feature extrac-
tion algorithm to each of a plurality of two-dimensional
images. The most common is the scale-invariant feature
transform (SIFT) algorithm, due to its ability to provide a
robust descriptor across varying image conditions. After
image extraction, a table of descriptor matches can be
computed across all combinations of descriptors for each
image, effectively computing correspondences between
images. A variety of known techniques are available, from
brute-force feature matching to model fitting algorithms that
employ random sample consensus (RANSAC).

At this point in the SfM process, image-to-image corre-
spondences permit estimation of a series of fundamental
matrices, which provide the necessary epipolar geometry for
cursory triangulation. A coarse estimate of a three-dimen-
sional sparse point cloud provides a series of equations that
relate the image coordinate system to the relative or arbitrary
world coordinate system (WCS). In particular, a “bundle
adjustment” can be performed using the open source Bun-
dler software to implement the initial estimation and refine-
ment of the camera projection matrices, the SfM equivalent
of the photogrammetric ground-to-image function. The cor-
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nerstone of this process is the Levenberg-Marquardt (L.-M)
algorithm. Like several other nonlinear optimization tech-
niques, the [-M algorithm is predicated on linearizing the
specified nonlinear model about some initial estimate of the
parameters values. Specifically, the L.-M algorithm belongs
to a subclass of nonlinear optimization techniques com-
monly referred to as nonlinear least-squares. The objective
is to find the model parameter values that minimize the sum
squared error (SSE) criterion represented by the nonlinear
least squares cost function.

Using this approach of estimating the fundamental matrix,
performing triangulation, and iteratively refining the solu-
tion allows a scene to be reconstructed up to a projective
ambiguity. In other words, the scene reconstruction is deter-
mined at best to within a projective transformation with
respect to the WCS. In the field of Computer Vision, it is
well known that methods exist to refine or “upgrade” the
reconstruction to a metric reconstruction, in which the scene
is determined up to a rotation, translation, and uniform
scaling. However, it is desired in here to place the image-
based, three-dimensional reconstruction into a fixed, earth-
based coordinate system. Moreover, a methodology is
required that is independent of available GCPs in the col-
lection imagery.

The techniques described herein differ from other StM
approaches in both collection geometry and available infor-
mation. Imagery is captured using one or more sensor
platforms that know their position and orientation relative to
a fixed coordinate system and can readily provide that
information with each image in the metadata that is supplied
with the image data (pixels) itself. For example, a sequence
of two-dimensional images of a scene may be taken by a
camera on an airborne platform with a global positioning
system (GPS) and inertial navigation system (INS), and the
measured earth-based position and orientation data from the
GPS and INS are included for each image in the metadata.
Within this context, there are two potential incorrect
assumptions that deserve mention. First, it is an incorrect
assumption that triangulation using the physical sensor
model and existing metadata will produce a high-fidelity
point cloud in the desired earth-based or fixed coordinate
system. Second, it is an incorrect assumption that using
existing metadata to initialize the parameter vector of the
L-M algorithm of the SfM process will guide the bundle
adjustment to a refined SfM solution in the desired coordi-
nate system.

The first approach essentially bypasses developing a
three-dimensional point cloud in a relative coordinate sys-
tem and attempts to directly reconstruct a three-dimensional
point cloud in fixed, earth-based coordinates by triangulat-
ing through the physical sensor model (e.g., using the
image-to-ground function). This approach is likely to fail
due to inherent inaccuracies in the parameter values of the
physical sensor model, e.g., position and orientation param-
eters and static errors in the model itself. Even if a bundle
adjustment has been performed, any remaining inaccuracies
will lead to triangulation errors in the point cloud. Essen-
tially, all the physical sensor model errors are introduced
into point cloud solution, resulting in a much less accurate
point cloud reconstruction, with every point having its own
errors and significant inaccuracies in the relative distances
between points in the point cloud.

Failure in the second approach may be more difficult to
interpret. The SfM workflow establishes a geometry built
upon image features, and adjustment procedures are imple-
mented to reduce error between the corresponding features
and cursory triangulation points. Camera projection matrices
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that result from this process have been designed to satisfy
this process. The difficulty of this task is the mixing of
image-based geometry with the geometry defined by the
metadata and sensor model. Initializing the error minimiza-
tion technique using the GPS (position) and INS (orienta-
tion) data introduces position and orientation errors into the
same minimization process with feature extraction error and
correspondence error. Even if accurate initialization values
and accurate error estimates are available for all parameters
that relate image feature points to triangulated points, noise
in the metadata has been introduced into the relative point-
to-point distances in the point cloud before it is necessary. In
short, it is not sufficient merely to know the image-to-ground
function of the image collection system, including position
and orientation, to create a high-fidelity point cloud in a
fixed, earth-based coordinate system. This information must
be employed in such a manner that errors in the metadata
and sensor model do not degrade the quality of the recon-
structed point cloud.

The difficulty of attempting mix image-based geometry
with geometry defined by the metadata and sensor model
within the StM process is illustrated visually in FIGS. 1-4.
FIG. 1 shows an idealized triangulation of a feature point
found in two, two-dimensional images in the absence of
errors in the image geometry (e.g., each two-dimensional
image can be represented by a two-dimensional array of
pixel values). A first camera position has a camera center C
that produces a first image in a first image plane I having an
image feature point u, such a corner of a building. A second
camera position has a camera center C' that produces a
second image in a second image plane I' having an image
feature point u' that corresponds to the same real-world
feature as image feature point u, e.g., the same building
corner. Rays extending from the camera centers C and C'
through image feature points u and u' on corresponding
epipolar lines interest at a three-dimensional point y in the
epipolar plane.

For the same scenario, FIG. 2 illustrates triangulation in
the presence of errors in the image-based geometry (e.g.,
feature extraction errors and correspondence errors between
images). Rays extending from camera centers C and C'
through image feature points do not intersect at a point in the
epipolar plane. However, two-dimensional features points
may be projected onto the epipolar lines, accounting for
error at the image planes I and I', and enabling trivial
triangulation. In other words, the SfM process forces the
image features to the correct geometry at the image plane by
forcing image feature to lie on corresponding epipolar lines,
and a trivial triangulation and well-defined feature points
can still be obtained. This is referred to as optimal triangu-
lation and allows the SfM process to converge to highly
accurate point cloud solutions in a relative coordinate sys-
tem relying on image-based geometry. Thus, a point cloud is
obtained by applying the SfM methodology, and the result
has been iteratively refined such that it is consistent with the
image-based geometry.

However, even perfect image correspondences will fail to
triangulate if the camera position and orientation do not
agree with some fixed geometry, in this case, the image-
based geometry. This problem is illustrated by FIGS. 3 and
4. FIG. 3 shows triangulation using refined image-based
geometry for a set of points y, in the three-dimensional
image relative point cloud. Rays extending from camera
centers C and C' through image feature points consistent
with the refined image-based geometry intersect at three-
dimensional points y; in the respective epipolar planes. This
is illustrated for several two-ray triangulations, which pro-
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duces a point cloud in an arbitrary WCS. While it is desired
to place the point cloud in fixed, earth-based coordinates,
attempting to accomplish this via the SfM process intro-
duces camera position and orientation errors into the point
cloud solution.

In FIG. 4, triangulation in the presence of errors in the
camera position and orientation is shown. The camera
position and orientation errors are represented by error
spheres around the camera centers C and C' and at the
intersections between the epipolar plane and the image
planes. Rays extending from camera centers C and C'
through image feature points on corresponding epipolar
lines do not intersect at a point in the epipolar plane due to
the discrepancies between the metadata and image-based
geometry, thereby preventing trivial triangulation. The GPS
and INS reports provided in the image metadata contain
random noise, and any remaining systematic error present in
the sensor model will also contribute to uncertainty. Any
attempt to control the camera position or orientation (with
metadata) will modify the image-based geometry, resulting
in significant errors in the three-dimensional point cloud.

To overcome the aforementioned difficulties, the high-
fidelity point cloud produced in the SfM workflow may be
placed in the desired coordinate system as a post-processing
step by estimating the mapping between the relative coor-
dinate system (the arbitrary WCS) of the image-based recon-
struction and the desired fixed, earth-based coordinate sys-
tem. FIG. 5 is a block diagram of an image reconstruction
system 500 useful for explaining the inventive concepts
described herein. Conceptually, image reconstruction sys-
tem 500 comprises at least an input/output (/O) interface
510, one or more processors 520, and at least one memory/
storage unit 530. I/O interface(s) 510 can be one or more
devices, e.g., an Ethernet card or module, configured to
enable communications over a network according to any of
a variety of networking protocols. Processor(s) 520 can be,
for example, one or more microprocessors, microcontrollers,
digital signal processors, etc. Memory/storage unit(s) 530
can be one or more tangible processor-readable or computer-
readable memories that store or are encoded with instruc-
tions that, when executed by processor(s) 520 cause the
processor(s) to perform the functions described herein. More
specifically, as described in greater detail below, memory/
storage unit(s) 530 can be encoded with high-fidelity point
cloud generation logic 532, low-fidelity point cloud genera-
tion logic 534, and transformation generation and applica-
tion logic, or simply “transformation” logic 536. Memory/
storage unit(s) 530 can also store two-dimensional image
data and associated metadata and sensor model data received
via I/O interface 510, and data generated by logic 532, 534,
and 536 when run on processor(s) 520, including the result-
ing three-dimensional point cloud solution in a fixed, earth-
based coordinate system that can be supplied as output from
image reconstruction system 500 via /O interface 510.

While FIG. 5 shows a processing environment comprising
one or more processors 520 that execute software stored in
one or more memory/storage devices 530, an alternative
processing environment is a fixed data processing element,
such as an application specific integrated circuit (ASIC) that
is configured, through fixed hardware logic, to perform logic
functions. Yet another possible data processing environment
is one involving one or more field programmable logic
devices, or a combination of fixed processing elements and
programmable logic devices. In one form, logic may be
embodied in a tangible processor-readable medium that is
encoded with instructions for execution by one or more
processors that, when executed by the processor(s), operate
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to cause the processor(s) to perform the functions described
herein. The architecture depicted in FIG. 5 is conceptual to
illustrate major functional units, and does not necessarily
illustrate physical relationships or imply any specific imple-
mentation.

FIG. 6 is a top-level functional flowchart illustrating
operations performed by image reconstruction system 500 to
generate a high-fidelity geoaccurate three-dimensional scene
reconstruction. In operation 610, image reconstruction sys-
tem 500 receives a plurality of two-dimensional images of a
scene. To enable a three-dimensional rendering, the images
should be taken from different views or look angles of the
scene. This can be accomplished by taking images from a
sensor moving relative to the scene taking a sequence of
images (e.g., a circling aircraft equipped with a camera) or
by having a plurality of stationary or mobile sensors taking
images from different look angles (or both).

The sensor(s) can be any form of sensor capable of
generating an image, such as a digital camera that generates
a two-dimensional array of pixel values from detection of
visible light, or analogous sensors that detect electromag-
netic radiation at other wavelengths (e.g., RF, IR, ultraviolet,
x-rays, etc.) and generate an array of values representing
variation in the intensity of the radiation over an area (e.g.,
radar, lidar, etc.). The sensor(s) can also take the form of
devices capable of detecting and rendering an image of the
presence of various substances or compositions of matter in
a scene, e.g., water vapor, hazardous materials, geological
deposits, etc. Thus, an “image” supplied to the image
reconstruction system can be any of a wide variety of
renderings involving an array of values that potentially vary
over a region or scene to reveal the presence of features.
Features within a scene to be reconstructed can include any
distinctive or identifiable structures (e.g., solid, liquid,
vapor, particulate cloud, etc.) including man-made struc-
tures such as buildings, roads, and bridges and naturally
occurring structures and geographical features such as
ground topology, rivers, lakes, foliage, etc.

The sensor(s) can be mounted on any of a variety of
mobile platforms such as in a portable, hand-carried device,
on a ground or maritime vehicle, an airborne vehicle, or a
satellite. The sensor(s) can also include those mounted on
stationary platforms, though this would require either mul-
tiple sensors at different locations or a target object or
structure that is moving at an angle relative to the platform
in order to generate multiple look angles. In any of these
cases, to enable ultimately placing the reconstructed three-
dimensional rendering in a fixed coordinate system, such as
earth-based coordinates, the position and orientation of the
sensor(s) must known relative to the fixed coordinate system
for each image taken. By way of a non-limiting example, the
sensor platform can include a GPS receiver capable of
determining the platform position via reception of GPS
satellite signals. Terrestrial-based position determining
schemes can also be employed to determine position.

Three-dimensional sensor orientation can be determined,
for example, by an on-board inertial navigation system
(INS) employing gyroscopes or the like to detect angular
movement of the sensor relative to the fixed coordinate
system. The position and orientation of the sensor(s) relative
to the fixed coordinate system can be supplied to the image
reconstruction system as metadata included with the image
data itself for each image. Optionally, other aspects of the
image-to-ground function of the physical sensor model
(which essentially maps pixels to their ground coordinates),
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such as information about the sensor’s characteristics, can be
supplied via the metadata or as a separate transmission over
the same or a different link.

Referring again to FIGS. 5 and 6, image reconstruction
system 500 generates a high-fidelity point cloud in a relative
coordinate system (operation 620) by processing high-fidel-
ity point cloud generation logic 532 and generates a low-
fidelity sparse point cloud in a fixed coordinate system
(operation 630) by processing low-fidelity point cloud gen-
eration logic 534. While in the examples described herein,
the fixed coordinate system is an earth-based coordinate
system, the term fixed coordinate system as used herein and
in the claims is not strictly limited to an earth-based coor-
dinate system, and any coordinate system relative to which
the sensor(s) position and orientation are known can serve as
a fixed coordinate system.

The high-fidelity point cloud is generated in the relative
coordinate system (e.g., an arbitrary WCS) using, for
example, an SfM image-based reconstruction of the geom-
etry of a scene. As previously described, an StM worktlow
operating on the image-based geometry is advantageous in
that it provides a high-fidelity reconstruction of a scene that
is not achievable by direct triangulation of corresponding
image features through their respective physical sensor
models. This is because the primary errors that occur in the
image-based geometry result from feature extraction errors
and correspondence errors, which are relatively small. The
resulting high-fidelity point cloud provides a clean scene
reconstruction in the relative coordinate system, where rela-
tive distances between points are consistent because features
were extracted from images themselves. Any error minimi-
zation that occurs via the L-M algorithm of the SfM process
minimizes error in a visual sense based on features in the
images. The overall goal of the system is to preserve this
precision in final image solution, i.e., to maintain the high-
fidelity point cloud while placing it in the fixed coordinate
system without altering its structure or relative distances
within the point cloud.

While FIGS. 5 and 6 show image reconstruction system
500 performing the generation of the high-fidelity point
cloud along with generation of the low-fidelity point cloud,
according to another implementation, image reconstruction
system 500 can receive a previously constructed high-
fidelity point cloud as an input from an external source (e.g.,
a lidar system employing SfM to generate its own high-
fidelity point cloud), thereby allowing image reconstruction
system 500 to bypass generation of the high-fidelity point
cloud and to perform the other operations while relying on
the received high-fidelity point cloud without having to
construct the high-fidelity point cloud itself.

The high-fidelity point cloud reconstruction can be placed
in the fixed coordinate system via the remaining operations
shown in FIG. 6. First, a low-fidelity sparse point cloud is
generated to serve as a reference in the desired fixed
(earth-based) coordinate system (operation 630). Three
pieces of critical information enable this multi-image trian-
gulation: refined pixel correspondences across multiple
views from the SfM workflow; image metadata containing
GPS/INS position and orientation information; and com-
plete knowledge of the ground-to-image function of the
collection system. As previously explained, introduction of
the position, orientation, and sensor model errors into the
process significantly reduce the accuracy of the resulting
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point cloud. Thus, as used herein and in the claims, a
high-fidelity point cloud refers to a point cloud constructed
in a relative coordinate system dependent on image-based
geometry and not on geometry based on metadata and a
physical sensor model (position and orientation of the
sensor(s) relative to a fixed coordinate system), such that the
relatively small errors in the point cloud solution are due
primarily to errors in the image-based geometry such as
feature extraction and correspondence errors. A low-fidelity
point cloud refers to a point cloud constructed in a fixed
coordinate system which additionally introduces errors in
the geometry based on metadata and the physical sensor
model (position and orientation of the sensor(s) relative to
the fixed coordinate system), resulting in relatively large
errors in the point cloud solution. A high-fidelity point cloud
has a higher fidelity (e.g., smaller errors in location of points
in the point cloud and smaller errors in the relative distances
between points) than a corresponding low-fidelity point
cloud constructed from the same two-dimensional images.

To generate the low-fidelity point cloud, a simple direct
linear triangulation algorithm is easily extensible to corre-
spondences across multiple views. The least-squares solu-
tion to the multi-image triangulation problem is sought.
More specifically, for each set of feature correspondences,
the SSE of their projected intersection is minimized. New
sensor projection matrices corresponding to each view are
derived from the physical sensor model and the available
metadata. To avoid numerical instability due to matrices
with poor condition number, a normalization matrix is
formulated for each view that effectively centers pixel
measurements (from that view) and scales the mean mag-
nitude to V2. Bach 2-dimensional image point v, ; may be
expressed as a mapping from a three-dimensional point x, in
the fixed earth-based coordinate system through the 3x4
camera projection matrix P; for a particular view j. In
homogeneous coordinates,

u; =P, ®

which can be rewritten as a cross product

0=u; @ Px; 2)
T Xi
Ui, j PLj
) |
=|Vij |®| P2
|
Vil o Lps ]
T
Ui P1,j%i
T
=|Vij |®| P2, ;%
Wi j pgjx;

which is a matrix of RANK=2 for w=1. It is desired for
image points u, ; to correspond to a single triangulated point
X,

70

uy = Prx; 3
Uiz = Pox;
Uiy = PrX;
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Using the previous formulation, the system of equations
above may be expressed as

T T
i1 P31 % = P21 Xi “
T T
Vil P31 % — Pri%i
T T
Ui2P3 0% = Poaki

T T
Vi,2P32%i — P1,2%i

T T
UinP3pXi = P2pXi

T T
VinP3pXi = PlaXi

or simply

Ax=0 )

The vector x, that minimizes ||Ax|| subject to the condition
|[X||=1 is the unit eigenvector with the smallest eigenvalue of
the matrix AZA, i.e., the last column of V in the singular
value decomposition (SVD) A=UXV7; this is the i trian-
gulated point. The process is repeated for all suitable image
feature correspondences established in the SfM framework.
Care should be taken to ensure that the assumed coordinate
system of the focal plane array (FPA) is consistent (or
accounted for) between the SfM approach, e.g., Bundler, and
the physical sensor model.

This method of triangulation minimizes the error in the
coordinate system of the reconstruction rather than forcing
error minimization at the image plane, which is customary
in the SfM methodology. This step is necessary in the
absence of GCPs to establish the relationship between the
fixed coordinate system (e.g., arbitrary WCS) of the StM
reconstruction. At this point in the processing, two point
clouds exist: one high-fidelity point cloud in a fixed coor-
dinate system and one low-fidelity point cloud in a fixed
coordinate system. There is a one-to-one mapping between
each three-dimensional point in the two point clouds; a
simple example is shown in FIGS. 7 and 8, which respec-
tively illustrate a low-fidelity point cloud and a correspond-
ing high-fidelity point cloud. For ease of visualization, these
point clouds depict a very simple, two-dimensional “house”
structure. It will be appreciated that actual point clouds are
typically three-dimensional renderings, requiring transla-
tion, scaling, and rotation in three dimensions.

As previously indicated, the low-fidelity point cloud can
be constructed as a sparse point cloud with significantly
fewer points that the full high-fidelity point cloud. In this
case, a corresponding sparse high-fidelity point cloud is
constructed from a subset of the points in high-fidelity point
cloud to determine the transformation. A variety of options
exist for selecting which and how many points in the
high-fidelity point cloud are to be included in the sparse
high-fidelity point cloud. For example, only those points
whose estimated error is below a certain threshold can be
used. According to another option, only points that appear in
a minimum number of the original two-dimensional images
are used. At a minimum, the sparse point cloud requires at
least the number of points corresponding to the number of
degrees of freedom in a three dimensional similarity trans-
form and a spatial distribution over the entire scene to be
reconstructed. The sparse low-fidelity point cloud is con-
structed to have points corresponding the high-fidelity point
cloud.

Once the high-fidelity and low-fidelity sparse point clouds
have been generated, in operation 640, image reconstruction
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system 500 determines the transformation between these the
relative coordinate system of the high-fidelity point cloud
and the fixed coordinate system of the low-fidelity point
cloud via comparison of the two sparse point clouds in
accordance with transformation logic 536 (FIG. 5). Ideally,
the two point clouds are related by a translation, a uniform
scale factor, and a rotation, but there is uncertainty present
in both data sets. It should be noted that the image feature
correspondences used for scene reconstruction have an
associated error value from the final error vector € of the
L-M bundle adjustment solution after convergence. This
error vector € may be used to select a desired number of
correspondences with the lowest image-based triangulation
error, effectively reducing the size of each point cloud (and
computation time), as noted above.

The concept of developing a transformation between the
coordinate systems is illustrated conceptually in FIGS. 9 and
10. In FIG. 9, the set of points y, (solid dots) represent the
sparse high-fidelity point cloud while the set of points x,
(empty dots) represent the sparse low-fidelity point cloud.
For the low-fidelity point cloud x,, rays extending from the
camera centers C and C', with uncertainty in position and
orientation, through image feature points consistent with the
refined image-based geometry intersect at three-dimensional
points X, in the epipolar plane. This is illustrated for several
two-ray triangulations, which produces a point cloud in a
fixed, earth-based coordinate system. FIG. 10 shows a
simplified point cloud transformation in which points from
both point clouds are related by a similarity transformation
matrix T. This matrix maps the high-fidelity point cloud y,
to the fixed coordinate system of the low-fidelity point cloud
points X,.

The relative (high-fidelity) and triangulated (low-fidelity)
point clouds are centered such that their respective means
are zero, and the difference between lengths of the new mean
vectors is computed to determine the uniform scale factor.
Points in the centered, relative point cloud are then scaled
such that the two point clouds have the same mean vector
length, as shown in FIG. 11. In the ideal, noise-free case, the
remaining transformation is a pure frame rotation. However,
noise is present, and performing QR decomposition on the
least-squares solution matrix reveals a matrix R that deviates
from an orthonormal matrix, indicating that the matrix is no
longer a pure rotation. Performing a full least squares
solution for the remaining nine elements does not accurately
represent the remaining three degrees of freedom (DOF), the
three-dimensional rotation parameters, so an SVD approach
is used to solve for these rotation parameters, exclusively.

In particular, the Kabsch algorithm is used to find the
optimal rotation (least-squares sense) between the centered
and scaled relative and triangulated data. A brief derivation
of the Kabsch algorithm can be shown by minimizing the
following cost function

- ©
SR = IRy —xi?
i=1

where R is the rotation matrix, and X, is a triangulated data
point in the fixed (earth-based) coordinate system that
corresponds to the point y; in the relative (arbitrary world)
coordinate system. The cost function in Equation 6 can be

written in a matrix form
SzsR=Tr((RY-X) (RY-X)) (M

=Tr(Y Y+ XTX)-2T7(XRY) (8)
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where X and Y are both 3xn matrices consisting of columns
made by the inhomogeneous coordinates of each point.
From Equation 8, the cost function IL;; (R) is minimized
when Tr (X'RY) is maximized. By using the cyclic prop-
erties of the trace operator and replacing the product YXZ by
its SVD, we have

THXTRY)=Tr(YXTR)=Tr(UZVIR)=Tr(ZVIRU) %)

which is maximized if the product V'RU is equal to the

identity matrix. Recall that U and V are unitary matrices, and
R is an orthonormal matrix. Solving for the rotation matrix,

R=VUT (10)

The previous derivation has not explicitly eliminated the
possibility that the calculated “rotation” matrix does not also
include a reflection about the origin. This can be checked
and fixed by calculating the determent of VU”. Let d=Det
(VU7), then a robust calculation of R is

100
R=V[0 1 O]UT

00d

an

FIG. 12 illustrates, in a simplified, two-dimensional
example, the final rotation of the high-fidelity point cloud
using the rotation matrix R to complete the process of
placing the high-fidelity point cloud in the fixed coordinate
system.

Once the optimal rotation matrix R, uniform scale, and
translation parameters have been derived from the sparse
point clouds, in operation 650, image reconstruction system
500 can then apply the transformation to each point in the
more dense high-fidelity point cloud with the same geometry
to place the high-fidelity point cloud in the fixed (earth-
based) coordinate system. In this manner, the high level of
accuracy and precise relative distances between points of the
high-fidelity point cloud are preserved in the final, geoac-
curate three-dimensional scene reconstruction (i.e., the rela-
tive errors between points result largely from the image-
based geometry errors rather than the position and
orientation errors of the physical sensor model).

The technology described herein supports the automatic
generation of geoaccurate three-dimensional models pro-
duced from imagery captured by several different sources,
which include: wide area motion imagery (WAMI) systems;
commercial aerial sensors (e.g., pictometry); commercial
remote sensing satellites (e.g., Digital Globe); aerial full
motion video systems; and national and tactical military ISR
assets. The automated techniques described herein reduce
labor-intensive, manual methods that are currently used to
develop three-dimensional models. These models are used
in several applications which include, but are not limited to:
web visualization of three-dimensional maps of cities (e.g.,
Google Earth/Maps, Microsoft Bing Maps, and Apple
Maps); visual assessment of targets and other locations;
disaster response; view shed analysis; gaming industry (e.g.,
automatic generation of realistic cities for games), the insur-
ance industry; and augmented reality.

Having described example embodiments of a new and
improved technique for reconstruction of geoaccurate three-
dimensional images via image-based geometry, it is believed
that other modifications, variations and changes will be
suggested to those skilled in the art in view of the teachings
set forth herein. It is therefore to be understood that all such
variations, modifications and changes are believed to fall
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within the scope of the present invention as defined by the
appended claims. Although specific terms are employed
herein, they are used in a generic and descriptive sense only
and not for purposes of limitation.
What is claimed is:
1. A method of generating a three-dimensional reconstruc-
tion of a scene, the method comprising:
generating a high-fidelity point cloud representing a three-
dimensional reconstruction of a scene from a plurality
of two-dimensional images generated by at least one
sensor whose position and orientation are known rela-
tive to a fixed coordinate system for each of the
two-dimensional images, the high-fidelity point cloud
being generated in a relative coordinate system without
regard to the position and orientation of the at least one
sensor relative to the fixed coordinate system;

generating in the fixed coordinate system a low-fidelity
point cloud representing a three-dimensional recon-
struction of the scene from the plurality of two-dimen-
sional images using the position and orientation of the
at least one sensor relative to the fixed coordinate
system such that the high-fidelity point cloud and the
low-fidelity point cloud are generated from the same
plurality of two-dimensional images, the low-fidelity
point cloud having a lower fidelity than the high-
fidelity point cloud due to physical sensor model errors
in the position and orientation of the at least one sensor;

determining a transformation between the relative coor-
dinate system and the fixed coordinate system based on
a relationship between points in the high-fidelity point
cloud and corresponding points in the low-fidelity point
cloud; and

converting the high-fidelity point cloud from the relative

coordinate system to the fixed coordinate system by
applying the transformation to points in the high-
fidelity point cloud, wherein an impact of the physical
sensor model errors on the high-fidelity point cloud in
the fixed coordinate system is limited to errors intro-
duced in the transformation.

2. The method of claim 1, wherein the high-fidelity point
cloud is generated using structure from motion (SfM) pro-
cessing.

3. The method of claim 1, wherein the relative coordinate
system is an arbitrary world coordinate system (WCS) and
the fixed coordinate system is an earth-based coordinate
system, and wherein the low-fidelity point cloud is gener-
ated based on a ground-to-image function of the at least one
sensor.

4. The method of claim 1, wherein the transformation is
determined using a sparse high-fidelity point cloud contain-
ing only a subset of the points in the high-fidelity point
cloud.

5. The method of claim 1, wherein the transformation is
applied to the high-fidelity point cloud via a transformation
matrix that performs translation, scaling and rotation to each
point in the high-fidelity point cloud such that relative
distances between the points in the high-fidelity point cloud
are maintained in the fixed coordinate system.

6. The method of claim 1, wherein the high-fidelity point
cloud is converted from the relative coordinate system to the
fixed coordinate system without use of a digital elevation
map (DEM) or ground control points (GCPs).

7. The method of claim 1, wherein the position and
orientation of the at least one sensor are received as metadata
associated with each of the plurality of two-dimensional
images, the metadata including global positioning system
(GPS) data and inertial navigation system (INS) data.



US 9,466,143 Bl

15

8. An image reconstruction system for generating a three-
dimensional reconstruction of a scene, comprising:

an interface configured to receive a plurality of two-

dimensional images generated by at least one sensor
whose position and orientation are known relative to a
fixed coordinate system for each of the two-dimen-
sional images; and

a processor configured to:

generate a high-fidelity point cloud representing a
three-dimensional reconstruction of a scene from the
plurality of two-dimensional images, the high-fidel-
ity point cloud being generated in a relative coordi-
nate system without regard to the position and ori-
entation of the at least one sensor relative to the fixed
coordinate system;

generate in the fixed coordinate system a low-fidelity
point cloud representing a three-dimensional recon-
struction of the scene from the plurality of two-
dimensional images using the position and orienta-
tion of the at least one sensor relative to the fixed
coordinate system such that the high-fidelity point
cloud and the low-fidelity point cloud are generated
from the same plurality of two-dimensional images,
the low-fidelity point cloud having a lower fidelity
than the high-fidelity point cloud due to physical
sensor model errors in the position and orientation of
the at least one sensor;

determine a transformation between the relative coor-
dinate system and the fixed coordinate system based
on a relationship between points in the high-fidelity
point cloud and corresponding points in the low-
fidelity point cloud; and

convert the high-fidelity point cloud from the relative
coordinate system to the fixed coordinate system by
applying the transformation to points in the high-
fidelity point cloud, wherein an impact of the physi-
cal sensor model errors on the high-fidelity point
cloud in the fixed coordinate system is limited to
errors introduced in the transformation.

9. The system of claim 8, wherein the processor is further
configured to generate the high-fidelity point cloud using
structure from motion (SfM) processing.

10. The system of claim 8, wherein the relative coordinate
system is an arbitrary world coordinate system (WCS) and
the fixed coordinate system is an earth-based coordinate
system, and wherein the processor is further configured to
generate the low-fidelity point cloud based on a ground-to-
image function of the at least one sensor.

11. The system of claim 8, wherein the processor is further
configured to determine the transformation using a sparse
high-fidelity point cloud containing only a subset of the
points in the high-fidelity point cloud.

12. The system of claim 8, wherein processor is further
configured to apply the transformation to the high-fidelity
point cloud via a transformation matrix that performs trans-
lation, scaling and rotation to each point in the high-fidelity
point cloud such that relative distances between the points in
the high-fidelity point cloud are maintained in the fixed
coordinate system.

13. The system of claim 8, wherein the processor is
further configured to convert the high-fidelity point cloud
from the relative coordinate system to the fixed coordinate
system without use of a digital elevation map (DEM) or
ground control points (GCPs).

14. The system of claim 8, wherein the interface is further
configured to receive the position and orientation of the at
least one sensor as metadata associated with each of the
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plurality of two-dimensional images, the metadata including
global positioning system (GPS) data and inertial navigation
system (INS) data.
15. A non-transitory computer readable medium encoded
with software comprising processor-executable instructions
that, when executed by one or more processors, cause the
one or more processors to perform functions of:
generate a high-fidelity point cloud representing a three-
dimensional reconstruction of a scene from a plurality
of two-dimensional images generated by at least one
sensor whose position and orientation are known rela-
tive to a fixed coordinate system for each of the
two-dimensional images, the high-fidelity point cloud
being generated in a relative coordinate system without
regard to the position and orientation of the at least one
sensor relative to the fixed coordinate system;

generate in the fixed coordinate system a low-fidelity
point cloud representing a three-dimensional recon-
struction of the scene from the plurality of two-dimen-
sional images using the position and orientation of the
at least one sensor relative to the fixed coordinate
system such that the high-fidelity point cloud and the
low-fidelity point cloud are generated from the same
plurality of two-dimensional images, the low-fidelity
point cloud having a lower fidelity than the high-
fidelity point cloud due to physical sensor model errors
in the position and orientation of the at least one sensor;

determine a transformation between the relative coordi-
nate system and the fixed coordinate system based on
a relationship between points in the high-fidelity point
cloud and corresponding points in the low-fidelity point
cloud; and

convert the high-fidelity point cloud from the relative

coordinate system to the fixed coordinate system by
applying the transformation to points in the high-
fidelity point cloud, wherein an impact of the physical
sensor model errors on the high-fidelity point cloud in
the fixed coordinate system is limited to errors intro-
duced in the transformation.

16. The non-transitory computer readable medium of
claim 15, wherein the instructions to generate the high-
fidelity point cloud comprise instructions that cause the one
or processors to generate the high-fidelity point cloud using
structure from motion (SfM) processing.

17. The non-transitory computer readable medium of
claim 15, wherein the relative coordinate system is an
arbitrary world coordinate system (WCS) and the fixed
coordinate system is an earth-based coordinate system, and
wherein the instructions to generate the low-fidelity point
cloud comprise instructions that cause the one or more
processors to generate the low-fidelity point cloud based on
a ground-to-image function of the at least one sensor.

18. The non-transitory computer readable medium of
claim 15, wherein the instructions to determine the trans-
formation comprise instructions that cause the one or pro-
cessors to determine the transformation using a sparse
high-fidelity point cloud containing only a subset of the
points in the high-fidelity point cloud.

19. The non-transitory computer readable medium of
claim 15, wherein the instructions to convert the high-
fidelity point cloud comprise instructions that cause the one
or more processors to apply the transformation to the
high-fidelity point cloud via a transformation matrix that
performs translation, scaling and rotation to each point in the
high-fidelity point cloud such that relative distances between
the points in the high-fidelity point cloud are maintained in
the fixed coordinate system.
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20. The non-transitory computer readable medium of
claim 15, wherein the instructions to convert the high-
fidelity point cloud comprise instructions that cause the one
or more processors to convert the high-fidelity point cloud
from the relative coordinate system to the fixed coordinate 5
system without use of a digital elevation map (DEM) or
ground control points (GCPs).

#* #* #* #* #*

18



